منوعات

كيفية حساب طول الوتر في المثلث القائم

كيفية حساب طول الوتر

من الأمور الهامة للكثير من الطلاب الذين يهتمون بدراسة الرياضيات معرفة كيفية حساب طول الوتر في المثلث القائم وفقًا لأهم القوانين والنظريات المتعلقة بأضلاع المثلث القائم للتعرف على طول الوتر.

طريقة حساب أضلاع المثلث القائم

من المعروف أن المثلث القائم مكون في الأساس من زاوية قائمة بالإضافة إلى ثلاثة أضلاع والأطوال التي تتواجد في المثلث تعرف بوتر المثلث وهو الضلع الذي يكون في مقابل الزاوية القائمة التي تتواجد في المثلث القائم الزاوية ولكن إن نظرنا إلى الضلعان الآخرين فسوف نجد أنهما متعامدان وكل واحد منهما يعرف بضلع القائمة أو ما يسمى بساق المثلث القائم

والكثير من المهتمين بعلم الرياضيات بشكل عام يهتمون بالتعرف على النظريات التي يمكن من خلالها حساب طول الوتر في المثلث القائم بشكل محدد.

ولذلك سوف نقدم لكم في هذا المقال على موقع مختلفون كيفية حساب طول الوتر في المثلث القائم وفقًا لبعض النظريات والقوانين الخاصة بأطوال المثلث كنظرية فيثاغورس واستخدام النسب المثلثية وذلك في السطور القادمة.

نظرية فيثاغورس

تعتبر نظرية فيساغورس من أهم وأشهر النظريات الرياضية التي تم ابتكرها العالم فيثاغورس لحساب أطوال أضلاع المثلث القائم الزاوية والتعرف على كيفية حساب طول الوتر والنظرية كالتالي:

أن مجموع مربعي ضلعي المثلث القائم يساوي مربع الوترومن الممكن التعبير عن هذه النظرية من خلال هذه الصيغة علماً أن أ، ب هما ضلعا القائمة، أما جـ فهو الوتر: أ² + ب² = جـ²

ولكي نقوم بحساب وتر المثلث القائم يجب أن نستعين بالنظرية السابق ذكرها ولتوضيح هذا الأمر سنعرض لكم مثال بسيط يوضح لكم بدقة كيفية حساب طول الوتر بالمثلث القائم وفقًا لنظرية فيثاغورث.

فإذا كان طول أحد أضلاع المثلث (أ) يساوي 4سم، والضلع الآخر (ب) يساوي 8سم، ما قيمة الوتر (جـ)؟

بتطبيق قانون فيثاغورس ينتج أن: 8²+4²=جـ²، جـ²=80 ، وبأخذ الجذر التربيعي فإن قيمة جـ = 8.94 سم.

طريقة استخدام النسب الثلثية لحساب طول الوتر

يمكنك الاستعانة أيضًا بالنسب المثلثية لقياس طول الأضلاع في المثلث القائم الزاوية وذلك وفقًا لما يلي:

إن كان هناك زاوية من زوايا المثلث الغير قائمة معلومة من ناحية القياس وكان أحد الأضلاع معلوم النسبة فيمكنك إيجاد طول باقي الأضلاع من خلال النسب المثلثية وهي:

  • جا (θ)= الضلع المقابل للزاوية (θ)/الوتر.
  • جتا (θ)= الضلع المجاور للزاوية (θ)/الوتر.
  • ظا (θ)= الضلع المقابل للزاوية (θ)/الضلع المجاور للزاوية (θ).

مثال على حساب طول الوتر من خلال النسب المثلثية

هناك الكثير من الأمثلة في مجال الرياضيات التي يمكن من خلالها توضيح فكرة قياس طول الوتر من خلال النسب المثلثية ومن أهمها ما يلي:

إذا كان طول الضلع ب ج في المثلث أب ج قائم الزاوية في (ب) هو 7سم، وقياس الزاوية ج= 53 درجة، جد قياس الضلع أب، والوتر أج.

باستخدام ظل الزاوية يمكن حساب طول الضلع أب، وهو الضلع المقابل للزاوية ج، وعليه: ظا (ج) = أب/ب ج = ظا(53) = أب/7، أب= 1.33×7= 9.29سم

أما الوتر فيمكن حسابه إما باستخدام نظرية فيثاغورس، او عن طريق استخدام جيب تمام الزاوية، أو جيبها، وباستخدام جيب تمام الزاوية يمكن حسابه كما يلي:

جتا (ج) = الضلع المجاور للزاوية (ج)/الوتر، جتا (53)= ب ج/الوتر = 7/الوتر، الوتر= 7/0.6 =11.7 سم.

إقرأ أيضًا: تعرف على تردد قناة توب موفيز الجديد بعد التعديل

أهم المميزات الخاصة بوتر المثلث القائم

هناك بعض المميزات الهامة الخاصة بوتر المثلث والتي يجب أن تتعرف عليها وهي كالتالي:

  • يمكن التعرف على طول الوتر في المثلث القائم باستخدام [نظرية فيثاغورس]، حيث أن:(مربع طول الوتر يساوي مجموع مربعي طولي الضلعين المشكلتين للزاوية القائمة.
  • منتصف الوتر هو نقطة تلاقي ارتفاعات المثلث القائم.

أهم الأمثلة على قياس طول الوتر

المثال الأول

إذا كان طول إحدى ساقي مثلث قائم الزاوية هو س، وكان طول الساق الثانية يقل بمقدار 7 عن طول الساق الأولى، وطول الوتر في هذا المثلث هو 13سم، جد طول ساقي هذا المثلث.

الحل:

طول الساق الأولى هو: س، أما طول الساق الثانية فهو: س-7. ومن خلال تطبيق قانون فيثاغورس أ² + ب² = جـ²

ينتج أن: س²+ (س-7)² = الوتر²، 2س²-14س+49= 169، 2س²-14س-120= 0، ومن خلال قسمة المعادلة على (2)

ينتج أن: س²-7س-60= 0 وبحل المعادلة ينتج أن: س=12سم، أو س= -5سم.

طول الساق الأولى هو: س=12سم، أما طول الساق الثانية فهو: س-7 = 12-7 =5سم.

المثال الثاني

إذا كان بعد الطائرة عن أحمد 1000م علماً أن أحمد لا يقف تحت الطائرة مباشرة، وارتفاعها العمودي عن سطح الأرض هو (ع)، وكان قياس الزاوية المحصورة بين الخط الممتد من الطائرة إلى أحمد والارتفاع العمودي هو 60 درجة، جد ارتفاع الطائرة عن سطح الأرض؟

 الحل:

يصنع أحمد مع الطائرة مثلثاً قائم الزاوية فيه الوتر هو بعد أحمد عن الطائرة، أما ارتفاع الطائرة العمودي عن سطح الأرض فهو ضلع القائمة الأول، والمجاور للزاوية (60)، وضلع القائمة الثاني هو بعد أحمد الأفقي عن النقطة التي تقع أسفل الطائرة مباشرة على سطح الأرض.

بما أن المطلوب من السؤال هو الضلع المجاور للزاوية (60)، ولدينا الوتر فإنه يمكن استخدام جيب تمام الزاوية لحل المسألة، وذلك كما يلي:

جتا (θ)= الضلع المجاور للزاوية (θ)/الوتر، جتا60= الارتفاع/1000، 0.5= الارتفاع/ 1000، ومنه: الارتفاع= 0.5×1000= 500متر، وهو ارتفاع الطائرة عن سطح الأرض.

المثال الثالث

مثلث قائم إحدى زواياه تساوي 50ْ، والوتر فيه يساوي 6، ما قيمة الضلع المقابل للزاوية التي قياسها ْ50؟

الحل:

في هذا المثال لدينا الوتر، والمطلوب هو إيجاد الضلع المقابل للزاوية، وبالتالي فإنه يمكن استخدام جيب الزاوية لحسابه، وذلك كما يلي:

جاθ= الضلع المقابل للزاوية (θ)/الوتر، جا(50)= الضلع المقابل للزاوية (θ)/ 6 ، الضلع المقابل للزاوية (50) = 4.6سم.

المثال الرابع

إذا كان طول برج للاتصالات هو 70م، تم ربطه بسلك من قمته يصل إلى الأرض وتم تثبيته في النقطة (ج) ليصنع السلك مع الأرض زاوية 68 درجة، جد طول هذا السلك.

الحل: يصنع السلك مع البرج مثلثاً قائم الزاوية فيه الوتر هو طول السلك، أما ارتفاع البرج فهو ضلع القائمة الأول، والمقابل للزاوية (68) التي يصنعها السلك مع الأرض، وضلع القائمة الثاني هو بعد النقطة التي تم تثبيت السلك بها عن أسفل البرج.

بما أن المطلوب من السؤال هو الوتر، ولدينا طول الضلع المقابل للزاوية (68)، فإنه يمكن استخدام جيب الزاوية لحل المسألة، وذلك كما يلي:

جاθ= الضلع المقابل للزاوية (θ)/الوتر، جا(68)= ارتفاع البرج/طول السلك، جا(68)= 70/طول السلك، طول السلك= 75.5م.

إعلان
الوسوم

مقالات ذات صلة

اترك تعليقاً

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *

إغلاق
إغلاق